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Abstract. Secondary domain superstructures in correlated random block copolymers are considered theo-
retically using the concept of the second order parameter related to fluctuations of the local mean block
length. It is shown that the size of secondary domains, Λ, is much larger than the primary domain size, L:
Λ ∝ ε−1, while L ∝ ε−1/2, where ε is a small parameter defining the composition asymmetry. Different sec-
ondary morphologies are characterized. It is also shown that separation of the system in two macroscopic
phases with different primary morphologies predicted earlier using the free energy expansion up to ψ4 (ψ
is the usual order parameter related to local composition) is an artifact of this widely accepted theoretical
model.

PACS. 36.20.Ey Conformation (statistics and dynamics) – 61.25.Hq Macromolecular and polymer
solutions; polymer melts; swelling – 61.41.+e Polymers, elastomers, and plastics

1 Introduction

It is well-known that block-copolymers can form pe-
riodic microdomain superstructures under appropriate
conditions [1,2]. The driving force for the structure for-
mation is an incompatibility of the blocks. Domain struc-
tures have been investigated theoretically both for diblock
[3–11] and multi-block [12–35] copolymers. Although
the earlier theoretical work was mainly focused on the
regular copolymer systems with monodisperse blocks
[3,4,12–16], more recently the effects associated with ran-
domness of the copolymer primary chemical structure and
block polydispersity attracted much attention [17–35].

The motivation of these studies is clear: on one
hand all synthesized copolymers are at least partially
chemically disordered, on the other hand important bi-
ological polymers like proteins are characterized by an
essentially random monomer sequence [36,37]. It was
shown, in particular, that thermal fluctuations tend to
destroy microdomain structures in completely random
copolymers [24,25,38], however the fluctuation effect is
suppressed in correlated random copolymers [27] which
are characterized by relatively long blocks of similar
monomers. Hence correlated random copolymers can be
adequately described by a mean-field approach (both in
the strong and weak segregation regimes except a rather
close vicinity of the critical point).

A number of interesting features of microphase sep-
aration in correlated random copolymers has been re-
vealed theoretically near the critical point, i.e. in the weak
segregation regime [27–29,34,35,39]. Classical lamellar,
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cylindrical and spherical morphologies were predicted in
this regime together with rather wide windows of phase
separation between different super-structures. The phase
separation phenomenon is indeed inherent to polydisperse
systems like diblock copolymers [9]. However recently we
found [30,40] that in the case of multi-block copolymers
with weakly polydisperse blocks the macroscopic phase
separation is suppressed and secondary domain structures
must be formed instead (i.e. droplets of minor phase
do not grow up to a macroscopic size but remain finite
and arrange in a secondary superlattice). Since correlated
random copolymers can be considered as multi-block
copolymers with extremely high block polydispersity, it is
tempting to expect the secondary structures also in these
systems.

The aim of the present paper is to verify this idea and
to characterize the secondary super structures in corre-
lated random copolymers.

In the next section the general equations for the free
energy of the system are derived in terms of the primary
order parameter ψ. Although the resultant free energy
expansion has been obtained before [21,22,24,28,29], the
way it is derived and discussed is useful for what follows.
Primary superstructures and the corresponding phase di-
agram of the system with quenched chemical disorder ob-
tained in references [28,35,39] are described at the end of
the section. The second order parameter ϕ related to a co-
existence of different primary structures and the resultant
secondary superstructures are considered in Section 3. The
main results are discussed in the last section.
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2 Primary microdomain structures

2.1 The primary order parameter

Let us consider a melt of long AB copolymers, i.e. linear
polymer chains consisting of two types of monomers A and
B. The number of monomers per chain, N , is assumed to
be very large, N →∞. The system is also assumed to be
incompressible:

φA(r) + φB(r) = 1

where φA(r) = ρA(r)/ρ0 is the volume concentration of
A monomers, and φB is ditto for B. Here ρA(r) is the
number concentration of A monomers, and ρ0 = const is
the total monomer concentration.

The mean fraction of A monomers is φ̄A = 0.5 + ε,
where the composition asymmetry parameter ε is as-
sumed to be small; φ̄B = 0.5 − ε. The disordered state
is characterized by homogeneous distribution of A and B
monomers: φA(r) = φ̄A. Therefore a structural order in
the system can be described by the order parameter field
ψ(r) = φA(r)− φ̄A.

2.2 Copolymer chemical structure

We assume block-copolymer structure with random block
sizes. The average number of monomers per block, n, is
large, n � 1. In other words, the probability pAB of B
monomer next to A is much smaller than pAA and pBB:
pAB ' 1/n � pAA ' pBB ' 1. Below we adopt the
so-called correlated random model of copolymer chemi-
cal structure [27] assuming that its monomer sequence is
characterized by the equilibrium statistics inherent to a
one-dimensional lattice system of A and B units which
repel each other: each AB contact (i.e. neighboring A
and B monomers along polymer chain) increases the to-
tal energy by EkBT , E � 1. Hence pAB ' e−E , i.e.
n ' eE � 1 (here we assume a nearly symmetric copoly-
mer with nearly equal numbers of A and B monomers).

The copolymer chemical structure can be alternatively
characterized by a sequence of spins {si}, where i is the
monomer position along the chain, s = 1/2 for A monomer
and s = −1/2 for B. The spin correlation function (for
correlated random model with ε = 0) is

〈sisj〉c =
1

4
e−2|i−j|/n. (1)

It is important to distinguish between two possible situa-
tions: (1) annealed disorder, when the monomer chemical
sequence can change from time to time1, so that each se-
quence can be realized with the appropriate a priori statis-
tical weight determined by the parameter E. (2) Quenched
disorder when the monomer sequence of each polymer
chain is frozen. It is this case that we focus on below.

1 This is not unrealistic: for example one could think of
monomer B as actually being A modified by a reversible bond
with a small molecule C.

In this latter case the averaging in equation (1) should
be treated as ensemble – rather than time – averaging.
This case is not deterministic: under the same prepara-
tion conditions chains with different chemical structures
can be formed. Hence physical properties of a finite sys-
tem must fluctuate from one copy to another. Fortunately
here we are primarily interested in the free energy which
has the property of self-averaging (see e.g. [41]): its rela-
tive fluctuations vanish in the thermodynamic limit (i.e.
when total volume V of the system tends to infinity).

2.3 Free energy with annealed disorder

It is convenient to represent the free energy as a sum of
two terms

F = Fint + Fconf (2)

where Fint is the excess free energy of interactions between
monomers, and Fconf is the conformational free energy re-
lated to the total number of conformations of all poly-
mer chains compatible with given gross distributions of A
and B monomers, φA(r) and φB(r)2. The Flory-Huggins
model [42] implies that

Fint = kBTρ0χ

∫
φA(r)φB(r)d3r (3)

where χ is the Flory interaction parameter. Note that
χ > 0 is a measure of an effective repulsion of A and
B monomers. Note also that χ has nothing to do with
the parameter E which characterizes the statistics of the
monomer sequence; it is the conformational energy Fconf

that depends on E.
Let us turn to the conformational term assuming an-

nealed chemical structure and a large scale inhomogeneity
associated with the order parameter field ψ(r). Then the
system can be coarse grained so that ψ and φ ≡ φA were
nearly constant in each grain which is assumed to be much
larger than the monomer size. The microscopic state of the
system is determined by the set of trajectories of all poly-
mer chains and by their monomer sequences. With fixed
polymer trajectories each grain Ṽ comprises a number of
copolymer fragments {Nα; α = 1, 2, ...} which all are typ-
ically long, Nα � 1, and∑

α

Nα = ρ0Ṽ .

Each fragment is characterized by its own fraction pα of
A monomers, ∑

α

pαNα = ρ0Ṽ φ. (4)

2 Note that equation (2) is an approximation itself; it is valid
if ρ0b

3 � 1, where b is the statistical segment: in this case
short-scale fluctuations are negligible.
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The free energy defined by the total statistical weight of all
possible sequences compatible with the above condition is

Fseq = min
{pα}

∑
α

F1 (Nα, pα) (5)

where F1(N, p) = −kBT lnZ1(N, p) and Z1 is the statisti-
cal weight accounting for all sequences of Np A-monomers
and N(1 − p) B-monomers. In the limit N � n this
“sequence” free energy is proportional to the number of
monomers: F1(N, p) = Nf1(p). The density function f1(p)

is calculated in Appendix A: f1 = −kBT
2
n

√
p(1− p),

where n = eE . Minimizing Fseq, equation (5), over {pα}
under the condition (4) we get pα = φ, and the free energy

of the grain Fseq = ρ0Ṽ f1(φ). Note that Fseq does not de-
pend on spatial trajectories of copolymer chains provided
the incompressibility condition is fulfilled (i.e. the total
monomer concentration is constant = ρ0). Hence confor-
mational statistics of copolymer chains are nearly not af-
fected by the imposed (large-scale) order parameter field,
i.e. the free energy contribution related to the total num-
ber of copolymer trajectories is a constant which can be
omitted. Thus, the total conformational/sequence free en-
ergy is Fconf =

∑
Fseq with summation over all grains, i.e.

Fconf = −
2

n
kBTρ0

∫ √
φ(1− φ)d3r (6)

Thus the total free energy F is thus defined by
equations (2, 3, 6). It is qualitatively very similar to the
standard Flory-Huggins free energy of a blend of two ho-
mopolymers (A and B): one have to replace φ lnφ+ (1−
φ) ln(1− φ) in the Flory-Huggins model by −2

√
φ(1− φ)

and also replace the homopolymer length by the average
block length n. The phase behavior of the annealed copoly-
mer system is also similar to the blend case: the system is
homogeneous if χn < 2; it separates into two macroscopic
phases if χn > X(ε), where X(ε) is just a numerical factor
depending on the composition asymmetry ε. The critical
point corresponds to χn = 2, ε = 0 (i.e. φ = 0.5). The fact
that phase separation is macroscopic validates the initial
assumption of large-scale inhomogeneity of the order pa-
rameter field.

2.4 Nonlocal free energy

Let us return to the case of quenched chemical disorder.
Then the free energy corresponding to a given ψ(r) is dif-
ferent from that with annealed disorder:

F = Fanneal + Fnloc. (7)

The second term in the r.h.s. of equation (7) is the non-
local free energy which is defined as the difference be-
tween the “quenched” (F ) and “annealed” (Fanneal) free
energies.

Why the difference? The most general reason for it is
related to the fact that in the case of annealed disorder
the sequence distribution can be affected by the field ψ(r)

while in the quenched case this distribution is fixed. How-
ever there is an important regime when the “quenched”
and “annealed” free energies do coincide: this is the case
when the whole system is infinite and the order parame-
ter ψ vanishes outside a finite region (which can be large
itself). In fact, let us consider a copolymer chain with pre-
scribed both trajectory and monomer sequence inside the
region where ψ 6= 0. In the case of annealed disorder its
statistical weight is proportional to the a priori proba-
bility P0(s) of the prescribed sequence s. In the case of
quenched disorder its statistical weight is proportional to
eµ(s)/(kBT ), where µ(s) is the chemical potential of chains
with the prescribed sequence. Obviously, probability (con-
centration) of such chains outside is directly proportional
to the same factor: P(s) = const eµ(s)/(kBT ). On the other
hand P(s) must be equal to the average fraction of chains
with the sequence s in the whole system, P0(s), since
any distortion in a finite region can not possibly affect
any intensive parameter (like sequence distribution) of an
infinite system. Hence the same chain statistical weight
for the cases of annealed and quenched chemical disor-
der, i.e. the same total free energy (apart from a constant
contribution).

Thus the nonlocal free energy is zero if ψ(r) = 0 out-
side a finite region, i.e. it can not be represented as an in-
tegral over the free energy density (in contrast to Fanneal):
it would be identically zero otherwise. Hence Fnloc is in-
deed a nonlocal characteristic.

There is no general way to calculate Fnloc. Yet it was
calculated analytically [18,20–22] for the case of weak
enough inhomogeneity, i.e. for small ψ. Below I formulate
the result is a slightly more general way:

Let us attribute a generic random (quenched) spin
variable s to each monomer, and define the order parame-
ter as ψ(r) =

∑
siδ(r−ri), assuming that the average spin

is zero, 〈s〉 = 0. Correlations between the spins along the
polymer chain are assumed to be finite (short) range. Next
we define s(i) as coarse grained si assuming that the scale
of coarsening is larger than the spin correlation length
(here i is the monomer position along the polymer chain).
Then the distribution of s(i) must be nearly Gaussian:
P [s(i)] = const exp

(
−
∫
fs(s(i))ds

)
, where fs(s) = 1

2κs
2.

Thus κ is the only essential parameter that characterizes
the quenched spin sequence disorder on large scales. Note
that the same parameter determines the quadratic term
of the local (annealed) conformational free energy expan-
sion3:

Fconf =
1

2
kBTρ0

∫
κψ2d3r +O(ψ3). (8)

Unsurprisingly κ is the only sequence parameter that en-
ters the non-local free energy:

Fnloc [ψ(r)] '
κ2

2V
kBT

ρ0

a2

∫
q,q′

|ψq|
2 |ψq′ |

2

q2 + q′2
(9)

3 The order parameter ψ(r) is assumed to be smooth enough,
i.e. coarse-grained.
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where V is the total volume of the system, a2 = b2/6, b,
the chain statistical segment, ψq =

∫
ψ(r)e−iqrd3r, and∫

q
≡ 1

(2π)3

∫
d3q. The non-local free energy, equation (9),

was originally derived for a genuine random copolymer in
reference [18] and later further generalized for correlated
sequences [20–22]. Equation (9) is valid if κψ2λ2/a2 � 1
where ψ is the typical real-space amplitude, and λ is the
typical spatial scale associated with the order parameter
(see Refs. [30,40] for more detail).

Obviously the non-local free energy prevents macro-
scopic phase separation: the r.h.s. of equation (9) di-
verges as q → 0, i.e. for an infinite-scale inhomogeneity.
Hence one should expect large but finite domains (i.e.
microphase separation) instead. The local conformational
free energy, Fconf , should be then generalized in order to
account for a finite scale inhomogeneity: the free energy
density must depend on both local composition φ and on
its gradient ∇φ. The latter dependence is given by the
standard Lifshitz-de Gennes [42,43] square gradient term.
So we get Fconf =

∫
fconfd

3r, where

fconf = kBTρ0

{
−

2

n

√
φ(1− φ) +

a2

4

(∇φ)2

φ(1− φ)

}
· (10)

Here the first term in curly brackets corresponds to the
limit of vanishingly small gradient ∇φ considered in the
previous section and in Appendix A4. In the case of a
weak composition inhomogeneity, φ(r) = φ̄+ ψ(r), where
φ̄ = 0.5 + ε and ψ � 1, the conformation free energy can
be expanded as

Fconf = −2kBT
ρ0

n

√
φ̄(1− φ̄) +

1

2

∫
q

γ2(q) |ψq|
2 +O(ψ3)

(11)

where

γ2(q) = kBTρ0

(
4

n
+ 2a2q2

)
+O(ε2). (12)

The linear term is missing since
∫
ψ(r)d3r ≡ 0.

Comparing equations (8, 6) we get κ =
[
4 +O(ε2)

]
/n.

Now using equation (7) with Fanneal = Fint +Fconf defined
by equations (3, 10) and Fnloc defined by equation (9) with
κ ' 4/n we get the total free energy

F '

∫ {
χnφ(1− φ)− 2

√
φ(1− φ) +

1

4

(∇φ)2

φ(1− φ)

}
d3r

+
8

V

∫
q,q′

|ψq|
2 |ψq′ |

2

q2 + q′2

where Rn ≡ n1/2a and (kBT/n)ρ0 are set to be unities for
simplicity, and φ = φ(r) = 0.5 + ε + ψ(r). The first term

4 Of course the reference to “the standard gradient term”
can not be regarded as a derivation which is left as an exercise
for the reader.

in the r.h.s. can be expanded as a series of ψ; the result
is:

F =

∫
q

(
q2−2τ

)
|ψq|

2+
8

V

∫
q,q′

|ψq|
2 |ψq′ |

2

q2+q′2
+

∫
f34(ψ)d3r

(13)

where

f34(ψ) =
γ3

3!
ψ3 +

γ4

4!
ψ4. (14)

τ = χ/χs − 1 is the relative distance to the spinodal χs =
2/n+O(ε2), γ3 ' 48ε, γ4 ' 48. The free energy expression,
equation (13), has been obtained in references [21–23,28].
It is valid near the critical point, i.e. for ε� 1, τ � 1.

2.5 Phase diagram

Microdomain structures corresponding to the free energy
minimum have been analyzed in references [28,39]. The
mean-field results valid in the vicinity of the critical point
(i.e. for τ � 1, n−1/4 � ε � 1) are briefly described
below.

The system is disordered (ψ ≡ 0) if τ < 0, i.e. χ < χs.
In the region τ > 0 the free energy is dominated by the
first two terms in the r.h.s. of equation (13). Minimization
of their sum defines the mean-square order parameter

C ≡
1

V

∫
ψ2d3r = (τ/3)

2
(15)

and the dominant wave-vector q∗ =
√

2τ/3; the Fourier
components ψq with |q| 6= q∗ can be neglected. The mi-
crodomain symmetry (morphology) is determined by the
subdominant 3rd term in the r.h.s. of equation (13). The
following superstructures have been found (see phase di-
agram in Fig. 1a): 1-dimensional lamellar in the region
τ/ε > 10.16, 2-dimensional hexagonal (cylindrical) for
3.405 < τ/ε < 9.479, and 3-dimensional body centered cu-
bic (bcc) for 1.847 < τ/ε < 3.111. The gaps between these
regions correspond to phase separation between “pure”
microdomain structures: disordered and bcc for 0 < τ/ε <
1.847; bcc and cylindrical for 3.111 < τ/ε < 3.405; cylin-
drical and lamellar for 9.479 < τ/ε < 10.164. The fractions
of the total volume occupied by two superstructures, p1,
p2, are defined by the following lever rule:

C1p1 + C2p2 = C

where Ci =
〈
ψ2
〉
i
, i = 1, 2, is the mean-square order pa-

rameter averaged over the corresponding phase (both C1

and C2 do not depend either on p or on τ within the
separation region). Taking into account that according to
equation (15)

Ci =
τ2
i

9
, i = 1, 2

where τ1 and τ2 correspond to the boundaries of the phase
separation window (i.e. for disordered/bcc phase separa-
tion τ1 = 0, τ2 = 1.847ε), and defining p ≡ p2 we rewrite
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(a)

(b)

Fig. 1. Mean-field phase diagram of a correlated random
copolymer (a) as obtained in reference [39]; (b) including sec-
ondary structures.

the “lever rule” as

τ2
1 (1− p) + τ2

2 p = τ2.

This equation shows, in particular, that volume fraction
of bcc phase in the disordered/bcc biphasic window is pro-
portional to τ2 [39].

3 Secondary microphase separation

Let us focus on the biphasic windows considered in the
previous section where the minimum of the free energy,
equation (13), is attained with two macroscopic phases
V1 = p1V and V2 = p2V characterized by different mi-
crodomain morphologies.

Below I present a general argument showing that the
predicted macroscopic phase separation can not be true.
First note the basic reason for the phase coexistence: with
two coexisting phases the free energy F (C1, C2, V1, V2)
as defined by equation (13) is formally lower than the
sum of free energies of subsystems V1 and V2 consid-
ered separately: ∆F = F12(C1, C2, V1, V2) − F1(C1, V1) −
F2(C2, V2) < 0. Obviously the local (annealed) free energy
terms do not contribute to ∆F : it is the nonlocal term
only (the second term in the r.h.s. of Eq. (13)) that is im-
portant. Noting that Fnloc(C1, C2, V1, V2) = Fnloc(C1p1 +
C2p2, V1 + V2) with Fnloc(C, V ) = (4/q∗2)V C2 =
(6/τ)V C2 we get

∆F = −
6

τ
V p1p2 (C2 − C1)2

. (16)

So, when two subsystems, V1 and V2, come into contact,
the total free energy decreases by ∆F . This sounds like
miracle: note that the free energy change is proportional
to the volume V rather than to the area of the interface
which is not considered here. The only reason for a free en-
ergy change is a possibility of a redistribution of copolymer
molecules between the two phases: some copolymer se-
quences may selectively prefer one of the phases. However
in the limit of very long copolymer molecules, N → ∞,
the relative fluctuation of any parameter which charac-
terizes the sequence must be of order 1/

√
N . Therefore,

while a redistribution is certainly possible, its effect on
the average free energy density must vanish in the limit
N → ∞, i.e. ∆F/V must tend to zero, i.e. no driving
force for phase separation.

Thus we arrive at a contradiction: a general argument
ensures that ∆F/V = 0 while the free energy expression
derived above implies a finite ∆F/V . The formal way out
is simple: the nonlocal free energy has been approximated
by the main 4th-order term of its ψ expansion. This is
not enough to consider the separation problem: higher-
order terms (in fact, up to the 8th order, see below) are
also important. This notion is not very useful as such, as
a derivation of higher order nonlocal terms seems to be
a very hard problem. Below we consider another way to
solve the problem.

3.1 The second order parameter

To summarize the above discussion: there is a tendency for
a phase separation between different microdomain struc-
tures, however a macroscopic separation is not allowed.
Hence a possibility of a secondary superstructure, i.e.
alternating finite domains characterized by different pri-
mary morphologies.

The driving force for the separation between primary
structures is related to the fractionation effect, i.e. a pos-
sibility of redistribution of different copolymer sequences
which might result in a decrease of the total free energy.
The free energy (see Eq. (13)) is sensitive to the sequence
redistribution because it affects the parameters like τ , γ3

and γ4. Obviously the most important effect is related
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to τ since the free energy contributions corresponding
to γ3,4 are subdominant anyway. In other words, domi-
nant contribution to the free energy variation due to se-
quence redistribution comes from the variation of the first
quadratic term which can be written as

F2 =
1

2

∫
q

[γ2(q)− 2χ] |ψq|
2

'
1

2

∫
q

[γ2(q∗)− 2χ] |ψq|
2

=
1

2

∫
[γ2(q∗)− 2χ]ψ2d3r.

The last two equations are valid since
∫
ψ2d3r =

∫
q
|ψq|

2

and the last integral is strongly dominated by the region
q ' q∗. Here γ2(q) is defined in equation (12). Hence the
free energy variation with a fixed first order parameter
field ψ(r) is

Fϕ1 ' δF2 '
kBTρ0

n

∫
ϕ(r)C(r)d3r (17)

where C(r) =
〈
ψ2(r)

〉
local

is the mean-square order pa-
rameter locally averaged (coarsened) over a scale larger
than the primary domain size ∼ 1/q∗, and

ϕ(r) ≡
n

2kBTρ0
δγ2(r, q∗) (18)

is the second order parameter. Here δγ2(r, q∗) =
〈γ2(q∗)〉local − γ̄2(q∗) is the difference between the locally
averaged value of γ2 and its mean value γ̄2(q∗) averaged
globally over the whole system. Note that by this defini-
tion ∫

ϕ(r)d3r = 0. (19)

Let us calculate the free energy corresponding to a small
second order parameter ϕ(r) assuming first that ψ ≡ 0.
The second order parameter ϕ is directly related to the
sequence distribution. In fact, it is well-known [3] that γ2

is related to the monomer correlation functions of nonin-
teracting copolymer chains. In the case ε = 0 this relation
is fairly simple: γ2(q) = kBTρ0/S(q), where the structure
factor

S(q) =
1

N

N∑
i,j=1

sisjg(i− j). (20)

and g(n) = e−a
2q2n is the Gaussian propagator of a chain

fragment of nmonomers. The sequence-averaged structure
factor is

S̄(q) =
∑
j

〈sisj〉 g(i− j).

Using equation (1) we get S̄(q) = n/(4 + 2nq2a2), i.e.
γ̄2(q) = kBTρ0

(
4 + 2na2q2

)
/n in agreement with equa-

tion (12). Let S be the structure factor (the wave-number

q is omitted for brevity) averaged inside a finite volume

Ṽ (the size of this volume is assumed to be larger than
1/q∗); S is defined by equation (20) with N replaced by

the number of monomers in the volume, Ñ = ρ0Ṽ . Let us
calculate the mean-square thermal fluctuation of S:

δS2 ≡
〈(
S − S̄

)2〉
=

1

Ñ2

∑
iji′j′

g(i− j)g(i′ − j′)

× {〈sisjsi′sj′〉 − 〈sisj〉 〈si′sj′〉} ·

The expression in curly brackets is small unless i is close
to i′ and j to j′ or i close to j′ and i′ to j. Hence

δS2 '
2

Ñ2

∑
ii′jj′

g(i− j)g(i′ − j′) 〈sisi′〉 〈sjsj′〉

'
1

8Ñ

n2

q2a2
· (21)

Let us consider the averaged within the volume Ṽ or-
der parameter ϕ̃ = (1/Ṽ )

∫
ϕ(r)d3r. Obviously ϕ̃ =

(n/2kBTρ0) 〈δγ2〉Ṽ = −(n/2)(δS/S̄2), so that its mean
square thermal fluctuation is

〈
ϕ̃2
〉

= n2 δS
2

4S̄4
=

8

Ṽ ρ0q∗2a2
· (22)

Note that
〈
ϕ̃2
〉
∝ 1/Ṽ since ϕ(r) is random (uncorrelated)

on scales larger than 1/q∗. Hence its large-scale fluctua-
tions are Gaussian, i.e. the free energy penalty of a ther-
mal fluctuation ϕ(r) can be written as a quadratic form:

Fϕ2 =
1

2
kBTρ0κϕ

∫
ϕ2d3r (23)

with

κϕ =
q∗2a2

8
· (24)

Next we apply the approach outlined in Section 2.4: the
order parameter ϕ is essentially determined by the copoly-
mer chemical sequence which is quenched. Hence the non-
local free energy (see Eq. (9)):

Fϕnloc =
κ2
ϕ

2V
kBT

ρ0

a2

∫
q,q′

|ϕq|
2 |ϕq′ |

2

q2 + q′2
· (25)

3.2 Free energy of a secondary structure

We are now in a position to write out the general free
energy expression in terms of ψ and ϕ. Let us first consider
a clarifying example: the system which is separated into
two regions V1 and V2 with different primary morphologies
and mean-square amplitudes C1 and C2. By setting ϕ(r) ≡
0 in the whole volume we suppress the most important
channel of sequence redistribution between the two phases.
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Hence the total free energy in this case is equal to the sum
of the free energies of each phase:

F [ψ,ϕ ≡ 0] = F1(C1, V1) + F2(C2, V2). (26)

The ϕ-dependence of the free energy was considered in the
previous section; it is defined by the sum Fϕ1 +Fϕ2 +Fϕnloc,
see equations (17, 23, 25):

F [ψ,ϕ] = F [ψ, 0] + Fϕ1 + Fϕ2 + Fϕnloc.

Assuming that ϕ = ϕ1 in one phase and ϕ = ϕ2 in the
second phase we get Fϕ1 = ϕ1C1V1 + ϕ2C2V2 and Fϕ2 =
(τ/24)

(
ϕ2

1V1 + ϕ2
2V2

)
, where we take into account that

R2
n ≡ na2 = 1 and (kBT/n)ρ0 = 1. Let us neglect the

non-local term Fϕnloc at this stage. Minimizing Fϕ1 + Fϕ2
over ϕ1, ϕ2 under the condition ϕ1V1 + ϕ2V2 = 0 (see
Eq. (19)) we get F = F1(C1, V1) + F2(C2, V2) +∆F ,

∆F = min (Fϕ1 + Fϕ2 ) = −
6

τ
(C2 − C1)

2
V1V2/V.

Note an agreement with equation (16) which shows that
the second order parameter ϕ is defined properly. The
agreement also confirms that the physical meaning of the
coupling term ∆F discussed above is correct.

The above argument can be easily generalized in or-
der to account for any number of secondary domains
(V1, V2, ...), and in fact for an arbitrary secondary struc-
ture provided that the size Λ of the secondary domains is
much larger than L.

Thus it is obvious that the only term missing in the free
energy, equation (13), is the non-local free energy Fϕnloc
related to the second order parameter ϕ which in general
case is determined by minimization of Fϕ1 +Fϕ2 defined by
equations (17, 23) under the condition 195:

F =

∫
q

(
q2 − 2τ

)
|ψq|

2
+

8

V

∫
q,q′

|ψq|
2 |ψq′ |

2

q2 + q′2

+

∫
f34(ψ)d3r + Fϕnloc

where

Fϕnloc =
1

2V

( τ
12

)2
∫
q,q′

|ϕq|
2 |ϕq′ |

2

q2 + q′2
(27)

and

ϕ(r) =
12

τ

[
C̄ − C(r)

]
, C̄ ≡

1

V

∫
C(r)d3r. (28)

Note that the new non-local term Fϕnloc is essentially pro-
portional to ψ8 since ϕ ∝ ψ2.

The non-local term, Fϕnloc, does not allow for a macro-
scopic phase separation: secondary domains are formed
instead. Then the total free energy can be written as

F = Fbulk + Fintf + Fϕnloc (29)

5 The non-local term Fϕnloc can be neglected during the min-
imization since it is much smaller than Fϕ2 for any near-
equilibrium structure as can be checked using the results ob-
tained below.

where Fbulk is the free energy formally corresponding to
the macroscopically separated system, i.e. Fbulk is ob-
tained by minimization of the r.h.s. of equation (13), and
Fintf incorporate the effect of interfaces between secondary
domains:

Fintf =

∫
σdAintf .

Here σ is the interfacial tension which is integrated over
the interfacial area. Equation (29) implicitly implies no
coupling between the interfacial and the non-local term.
This assumption is valid if the interfacial thickness ξ is
much smaller than the secondary domain size Λ which
defines the typical distance between the interfaces; the
validity of this condition is discussed in the last section.

We now focus on the last two terms in equation (29)
which determine the secondary structure.

3.3 Interfacial free energy

In the limit Λ � ξ we can neglect the effect of the sec-
ondary non-local free energy Fϕnloc on the interfacial en-
ergy, i.e. calculate the tension σ assuming coexistence of
two macroscopic phases with different morphologies and
using equation (13).

The equilibrium interfacial thickness ξ is much larger
than the primary period 2π/q∗ (see below). Hence the

Fourier spectrum of the order parameter, |ψq|
2
, must be

concentrated in the region |q| ' q∗. The interfacial energy
in this case is obtained in Appendix B, equation (B.4):

Fintf = 2

∫
q

|ψq|
2

(|q| − q∗)2
+

∫
f̃(ψ(r))d3r (30)

where

f̃(ψ) = f34(ψ)− αψ2 − β

the function f34(ψ) is defined in equation (14), and the
parameters α and β are determined by the conditions〈
f̃(ψ)

〉
1

= 0,
〈
f̃(ψ)

〉
2

= 0, where 〈...〉1,2 means aver-

aging in the bulk of phases 1, 2.
Each morphology and the two-phase structure as a

whole is characterized by a set of basic wave-vectors {Qi},
|Qi| = q∗ =

√
2τ/3, i.e. the Fourier spectrum ψq must be

concentrated near these base vectors: ψq =
∑
iAi(q−Qi),

where each function Ai(q) ≡
∫
Ai(r)e−iqrd3r is localized

in the region |q| . 1/ξ � q∗. Hence the corresponding
real-space functions Ai(r) are smooth: their characteris-
tic scale ξ is much larger than the primary domain size
∼ 1/q∗.

It is useful to write out the free energy in terms of these
smooth amplitudes Ai(r) instead of the first order param-
eter ψ. Assuming that interfacial plane is perpendicular to
z-axis and using equation (30) we get the following energy
per unit area:

F =

∫
dz

{
f̃(A) + 2

∑
i

cos2 θi

∣∣∣∣dAidz

∣∣∣∣2
}

(31)
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where A = {Ai(z)}, θi is the angle between the basic

vector Qi and the z-axis, and f̃(A) is a 4th-order poly-
nomial which can be easily found by averaging out “fast”
components (varying with wave-numbers q ∼ q∗) of f̃(ψ).
The functional F , equation (31), is formally identical to
the one describing interfacial structure in a regular block-
copolymer system in the weak segregation regime [40].
The interfacial tension σ can be obtained by mini-
mization of F over A(z) with appropriate boundary
conditions at z = ±∞ where the corresponding pure mor-
phologies should be revealed. This minimization problem
has been considered in reference [40] for the interface be-
tween disordered and bcc morphologies. It was shown that
the tension nearly does not depend on the interfacial plane
orientation, i.e. the orientation-averaged tension σav could
be used to a good approximation,

σav =
29

453

√
20

γ3
3

γ2.5
4

' 0.174ε3. (32)

The interfacial (half) thickness is [40]

ξ =
2
√

3

3

4

√
60
γ0.5

4

γ3
' 0.97/ε. (33)

Hence the interface is indeed much thicker than the pri-
mary domain size 1/q∗ ∼ 1/

√
ε.

3.4 Secondary superstructures

As discussed above the secondary domain structure cor-
responds to the minimum of nonlocal plus interfacial free
energies

Fex = Fintf + Fϕnloc (34)

where Fϕnloc is defined by equation (27).
Let us focus on the biphasic window of coexistence of

disordered and bcc primary morphologies. The interfacial
free energy here is

Fintf ' σavAintf (35)

where the tension σav is defined in equation (32), and Aintf

is the total interfacial area. Within the approximation of
narrow secondary interfaces adopted here the second or-
der parameter ϕ must be nearly constant inside each sec-
ondary domain:

ϕ(r) =
12

τ

(
C̄ − C(r)

)
=

12h

τ
ϕ̃(r) (36)

where ϕ̃(r) = p in a disordered domain, ϕ̃(r) = p − 1 in
a bcc domain, h = C2 − C1 = (1/9)

(
τ2
2 − τ

2
1

)
, and τ1 =

0, τ2 = 1.847ε are the boundaries of the disordered/bcc
separation region (see Sect. 2.5). Using equation (36) we
finally write the nonlocal term as

Fϕnloc =
K2

2V

∫
q,q′

|ϕ̃q|
2 |ϕ̃q′ |

2

q2 + q′2
(37)

where K = (12/τ)h2 ' 1.73(ε4/τ).
The free energy Fex defined by equations (34–37) is

formally identical to the one obtained for weakly poly-
disperse block-copolymers [40]. Hence similar secondary
structures which are briefly described below (see Fig. 1b).

In the region 0 < τ < 0.77ε (this region corresponds to
the range 0 < p < 0.174 for the volume fraction of primary
bcc morphology) spherical secondary domains arranged
in face-centered-cubic (fcc) superlattice are formed. Each
sphere is characterized by bcc primary morphology, and
the matrix is disordered. The radius of secondary spheres
is

R '
1.9

ε
(38)

if τ � ε.
Cylindrical secondary morphology (bcc cylinders ar-

ranged in 2-dimensional hexagonal lattice) is stable in the
region 0.77ε < τ < 1.05ε. Lamellar secondary structure is
formed in the region 1.05ε < τ < 1.52ε, and the regions
1.52ε < τ < 1.68ε, 1.68ε < τ < 1.85ε = τ2 correspond to
the inverse cylindrical and spherical secondary morpholo-
gies respectively. In the vicinity (but below) τ2 the radius
of inverse (i.e. disordered) secondary spheres is

R '
1.50

ε

(
1−

τ

τ2

)−1/3

(39)

i.e. the domain size is increasing as τ tends to τ2.
Let us consider now the biphasic window with cylin-

drical and lamellar primary morphologies. Again the sec-
ondary structures here are similar to those predicted to
weakly polydisperse multiblock-copolymers [40]. The low-
est interfacial tension corresponds to the situation when
both primary lamellae and cylinders are parallel to the
interface, i.e. z-axis (normal to the interface) is perpen-
dicular to all basic wave-vectors of primary structures. In
this case |q|−q∗ in equation (30) is of order of (∆q⊥)

2
/q∗,

where ∆q⊥ ∼ 1/ξ⊥ is the characteristic wave-vector de-
fined by the interfacial thickness ξ⊥. Hence (d/dz) in
equation (31) should be replaced by (1/q∗)(d2/dz2). Then
we get upon minimization

ξ⊥ ∼ ε
−0.75, σ⊥ ∼ ε

3.25.

The orientation conditions mentioned above strongly favor
a lamellar secondary morphology. The typical period of
this lamellar structure is

Λ ∼
( σ⊥
K2

)1/3

∼ ε−11/12.

4 Discussion and conclusions

Microdomain structures in melts of random multi-block
copolymers with quenched monomer sequence are consid-
ered in this paper. The correlated random model [27] of
copolymer chemical structure is analyzed near the criti-
cal point corresponding to symmetric copolymer compo-
sition, ε = 0, and χn = 2, where n is the mean num-
ber of monomers per block. A mean-field approach used
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here is valid not too close to the critical point, i.e. when
the relative distance to this point, τ , is larger than n−1/4

[24,34,35].
As the main result I showed that a macroscopic phase

separation between different microdomain morphologies
predicted earlier [28,35,39] is suppressed in the limit of
very long chains: the macro-separation is an artifact of the
ψ4 model adopted in the previous studies. It is shown that
a secondary superstructure is formed instead with finite
(rather than macroscopic) domains arranged periodically.
Each secondary domain is characterized by one of the two
competing primary morphologies. The characteristic size
of these secondary domains in the window of competition
between disordered state and bcc (spherical) primary mor-
phology scales as Λ ∼ (1/ε)Rn, where Rn = an1/2 is the
Gaussian block size and ε � 1 is the composition asym-
metry, i.e. Λ is much larger than the primary domain size
L ∼ Rn/ε1/2.

The predicted domain structures (as shown in the
phase diagram of Fig. 1) are valid if the composition asym-
metry parameter ε is larger than n−1/4 since the charac-
teristic τ is of order of ε. Yet the secondary structures are
also expected in the region ε . n−1/4, where the effect
of composition fluctuations was proved to be important
[24,34,35]. The secondary domain size in this regime
should be nearly independent of ε; it scales as Λ ∼ Rnn1/4.
Calculation of the phase diagram (incorporating both pri-
mary and secondary structures) in the fluctuation zone
should be a subject of a separate study which was not
attempted here.

The secondary morphologies are analyzed in the nar-
row interface approximation, i.e. assuming that the thick-
ness ξ of an interface between secondary domains is
smaller than the domain size Λ. Five regions of differ-
ent secondary superstructures are predicted in the dis-
ordered/bcc window, 0 < τ < 1.847ε (see Sect. 3.4).
In particular an fcc structure of secondary spherical
(bcc) domains is predicted for 0 < τ < 0.77ε. The ra-
dius of secondary spheres, R ' 1.9Rn/ε, as defined by
equation (38), is about twice the predicted interfacial
thickness ξ ' 0.97Rn/ε (Eq. (33)). Hence the narrow in-
terface approximation is not strictly valid in this region.
Yet one can hope that this approximation is appropriate
at least qualitatively, i.e. that the predicted type of the
secondary structure is correct. The predicted boundary of
the fcc superstructure (τ = 0.77ε) is surely approximate.
A further (perhaps numerical) work would be required
in order to elucidate this issue: it would be necessary to
minimize the excess free energy, Fex (Eq. (34)), allowing
a generic structure, i.e. neither thin nor plain secondary
interfaces.

Other secondary morphologies (cylindrical, lamellar,
and inverse) are predicted for larger τ ’s. As τ increases,
the relative thickness of the interfaces decreases, so that
the narrow interface approximation becomes more and
more accurate. This approximation becomes asymptoti-
cally exact as τ tends to τ2 ' 1.847ε (the upper bound-
ary of the inverse spherical secondary morphology): here

ξ/R ' 0.65 (1− τ/τ2)1/3 tends to zero (see Eqs. (33, 39)).

A lamellar secondary structure is predicted almost in
the whole window where cylindrical and lamellar primary
morphologies are competing, i.e. for 9.479ε . τ . 10.164ε.
Here the thickness of secondary interfaces is ξ⊥ ∼ Rn/ε0.75

and the thickness of secondary lamellae is Λ ∼ Rn/ε11/12.
Hence Λ � ξ⊥ � L, if ε � 1, i.e. the narrow interface
approximation is valid in this regime.

The theoretical approach developed in this paper in-
volves the second order parameter ϕ which is proportional
to the local fluctuation of the critical χ-parameter (in
other words, of the effective block size) due to the ran-
domness of the primary copolymer sequence. The nonlocal
free energy associated with this order parameter, Fnloc, is
calculated in the main ϕ4 order, see equation (27). This
ϕ4 approximation is not valid if ϕ is large enough so that
the probability P of fluctuation ϕ for a relevant chain frag-
ment of Ñ monomers is small. Note that equation (23) im-

plies that the probability P ∼ exp
[
−(1/2)κϕϕ

2Ñ
]
, where

κϕ is defined in equation (24). The relevant Ñ is deter-

mined by the secondary domain size R: Ñ ∼ R2/a2, and
the typical ϕ is defined by equation (36): ϕ ∼ h/τ ∼ ε2/τ .

Thus the basic equation (27) is valid if κϕϕ
2Ñ � 1, i.e.

R2τ
(
ε2/τ

)2
� 1. (40)

Hence the most dangerous regime corresponds to small τ ,
i.e. to the region of spherical (fcc) secondary superstruc-
ture. Using equation (38) we get the condition τ � ε2,
which is not strongly restrictive since typically τ ∼ ε in the
region of interest. The region of inverse fcc structure is also
dangerous since R is large there. Using equations (39, 40)
we get another condition 1 − τ/τ2 � ε3/2 limiting the
region of validity of the theory.

The last comment concerning mean copolymer compo-
sition inside the secondary domains, i.e. the mean values
of the first order parameter ψ1 and ψ2, where 1 and 2
denote domains with one and the other primary struc-
tures. These values nearly does not depend either on the
secondary structure or on the domain size. Hence ψ1,
ψ2 can be obtained by minimization of the free energy,
equation (13), i.e. neglecting both second non-local free
energy Fϕnloc and the interfacial energy. It is sufficient to
expand the free energy, equation (13), in powers of ψ1,2

up to the quadratic order (note that allowing for ψ1,2 is
equivalent to consideration of Fourier components ψq with
wave-vectors q ∼ 1/Λ much smaller than q∗). The result is

ψ1 '
3

4τ
Hp, ψ2 = −

3

4τ
H(1− p)

where H = H2 −H1, Hi = 〈(∂/∂ψ)f34(ψ(r))〉i where 〈·〉i
means averaging over domains of type i = 1, 2. For exam-
ple H1 = 0, H2 ' 6.95ε3 for the disordered/bcc separation
window. Hence in this case

ψ1 ' 1.53ετ, ψ2 ' −1.53ετ

(
τ2
2

τ2
− 1

)
(41)

where we take into account that p = τ2/τ2
2 in this

window. Therefore more ordered bcc secondary domains
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consist of copolymer fragments with more symmet-
ric composition. The effect is small however: the
composition change due to segregation, |ψ2| ∼
ετ ∼ ε2, is much smaller than the priming
composition asymmetry ε. The composition differ-
ence between the two phases was considered before
[39,35]. Equation (41) disagree both with the results of ref-
erence [39] where a weaker effect, ψ1,2 ∼ ε3, was predicted,
and with the conclusion of reference [35] that ψ1,2 = 0.

Appendix A: Free energy of a correlated
random copolymer with annealed disorder

Let us consider a linear system (sequence) of NA A-
monomers and NB B-monomers assuming that each AB
contact increases the total energy by kBTE. The free en-
ergy of a long sequence (N = NA + NB � n ≡ eE) is
proportional to the total number of units

F1(NA, NB) = Nf1(p) (A.1)

where p = NA/N . The grand canonical partition function
of the system is

Z(µA, µB) =

∫
dNAdNBeµANA+µBNBe−F1(NA,NB)/(kBT ).

Using equation (A.1) we rewrite Z as

Z(µA, µB) =

∫
dNdpNeN [µAp+µB(1−p)−f1(p)/(kBT )].

Obviously the function Z must show a singularity at the
line defined by the condition

min
p

[
f1(p)

kBT
− µAp− µB(1− p)

]
= 0. (A.2)

The grand partition function can be alternatively repre-
sented as

Z(µA, µB) =

∫
e−EmZ̃(µA, µB,m)dm

where Z̃(µA, µB,m) is the grand partition function of a
system with m AB pairs:

Z̃ =
m∏
i=1

∫
e−µinidni

where µi = µA for odd i, and µi = µB for even i. Hence

(we assume even m) Z̃ = (1/µAµB)
m/2

, i.e. Z(µA, µB)
shows a singularity if

E +
1

2
ln (µAµB) = 0. (A.3)

Equation (A.2) must be true for any µA, µB satisfying
equation (A.3). Considering small variations of µA and
µB we get

p/(1− p) = µB/µA.

Hence µA = e−E
√
p/(1− p), µB = e−E

√
(1− p)/p and

f1(p) = −2kBT e−E
√
p(1− p).

Appendix B: Derivation of equation (30)

The free energy, equation (13), can be represented as

F = F12 + F34,

where F34 =
∫
f34(ψ)d3r. The gradient free energy (first

term in the r.h.s. of Eq. (30)) comes from the first two
dominant terms in the r.h.s. of equation (13):

F12 =

∫
q

(
q2 − 2τ

)
|ψq|

2 +
8

V

∫
q,q′

|ψq|
2 |ψq′ |

2

q2 + q′2

= CV

{
−2τ +

〈
q2
〉
ρ

+ 8C

〈
1

q2 + q′2

〉
ρρ

}
(B.1)

where C =
∫
q
|ψq|

2
, 〈·〉ρ means averaging with the spec-

trum distribution ρ(q) ≡ |ψq|
2
/ (CV ):〈

q2
〉
ρ
≡

∫
q

q2ρ(q)

and 〈·〉ρρ means double averaging over q and q′.

Equation (B.1) can be rewritten as

F12 = −2τCV + 2C3/2V 〈x+ 1/x〉ρρ

where x = x(q, q′) = (q2 + q′2)/2q∗2 and q∗ = 2
√
C. Ob-

viously the free energy minimum

F 0
12 = −2τCV + 2C3/2V

is attained for x = 1, i.e. if the spectrum is localized at
|q| = q∗. Such spectrum is characteristic for pure mor-
phologies, but an interface would imply deviations from
q∗. Assuming small deviations we write x = 1 + ∆ + ∆′,
where both∆ = 0.5

(
q2/q∗2 − 1

)
' (|q|−q∗)/q∗, and∆′ '

(|q′| − q∗)/q∗ are small. Then x + 1/x ' 2 + (∆+∆′)2,
so that

F12 = F 0
12 + Fgrad,

where

Fgrad ' 4C3/2V
[〈
∆2
〉
ρ

+ 〈∆〉2ρ

]
. (B.2)

The second term in square brackets is negligible, since
both

〈
∆2
〉
ρ

and 〈∆〉ρ are inverse proportional to the size

Lz of the system (in the direction perpendicular to the

interface)6, hence
〈
∆2
〉
ρ
/ 〈∆〉2ρ ∝ 1/Lz vanishes in the

macroscopic limit. So keeping only the first term and writ-
ing an integral for averaging we get

Fgrad ' 2

∫
q

|ψq|
2 (|q| − q∗)2

.

6 One way to prove this statement is to represent
〈
∆2
〉
ρ

in

the form analogous to equation (31): then it becomes apparent
that this quantity scales as Aintf/V , where Aintf is the inter-
facial area; the same scaling for 〈∆〉ρ could be obtained using
similar approach.
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The total free energy F = F 0
12 +Fgrad +F34 must be then

minimized over ψ. Obviously

min
ψ
F = min

C

[
F 0

12 + αCV
]

+ min
ψ

{∫ [
f34(ψ)− αψ2

]
d3r + Fgrad

}
where α should be chosen self-consistently, so that C corre-
sponding to the first minimum in the r.h.s. coincides with
(1/V )

∫
ψ2d3r corresponding to the second minimum. The

second minimum must correspond to a phase separation
between two morphologies. Hence the effective energy den-
sities, feff = f34(ψ) − αψ2, must be equal in the bulk of
two phases (otherwise one of the morphologies would be
more favorable):

〈feff〉1 = 〈feff〉2 ≡ β. (B.3)

Hence

F = Fbulk + Fintf

where

Fbulk = F 0
12 + αCV + βV

is the bulk free energy which is proportional to the total
volume V (note that parameters α and β are actually
defined by Eq. (B.3) so that they depend only on ε), and

Fintf =

∫ [
f34(ψ)− αψ2 − β

]
d3r + Fgrad (B.4)

is the interfacial free energy.
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